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Abstract. Liquid-vapourc~existence andsurface tensionof binary mixturesis stud- 
iedby hlonte Carlosimulation. Bothmixtw3with adiff-cein thesizeparameters 
and mixtures with a difference in the energy parameters of the Lennard-Jones po- 
tential are investigated. The results for the surface tension and the coexisting liquid 
density are compared with the predictions of onsfluid models. Tlie van der Waals 
model is found to be quite accurate, except in cases of Strong interfacial adsorption. 
An interpretation of this accuracy is given, by developing a one-auid model based 
on random padring of hard spheres. It is found that the predictions of this random- 
packing model are dose to predictions of the van  der Waals ?n-fluid model. We also 
present a simulation of the argon-kypton liquid-vapour interface. 

1. In t roduct ion  

Surface tension is a direct manifestation of the attractive interaction between atoms 
or molecules in a liquid. The statistical-mechanical problem of computing the surface 
tension and other liquid-vapour interfacial quantities from this interaction can be 
solved either by approximate theories or by computer simulation. The advantage of 
computer simulation is that  no approximation has to be made, the disadvantage is 
the use of a finite system with truncated interatomic potentials. Several simulations 
of liquid-vapour systems have been reported in the literature, using either the Monte 
Carlo or the molecular-dynamics method (see [l]). 

In binary mixtures, interesting effects occur due to adsorption at  the liquid-vapour 
interface: adsorption of the more volatile component can significantly reduce the sur- 
face tension (this follows from the Gibbs adsorption equation). A mean field theory for 
inhomogeneous fluids has been developed [2], that reproduces this effect [3]. The the- 
ory predicts values of the surface tension of mixtures with reasonable accuracy, though 
they are generally slightly too low. Relatively few simulation studies of liquid-vapour 
coexistence in binary mixtures have been reported [Z-51. 

Recently we demonstrated that interfacial quantities obtained from Monte Carlo 
simulations are consistent with the Gibbs adsorption equation [5]. For binary mix- 
tures it was further demonstrated that the inclusion of particle exchanges in the sim- 
ulations leads to improved sampling of configurational phase space, and hence yields 
more accurate values for the ensemble averages than conventional Monte Carlo or 

t Also: UniveczitC Libre de Bruxelles, Belgium. 
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molecular-dynamics methods do. Here we apply this simulation technique to liquid- 
vapour coexistence in a series of binary Lennard-Jones mixtures, with energy and 
size parameters of the potential varied systematically (in [2-51 argon-krypton param- 
eters were used). It should be noted that the system, consisting of a liquid film in 
equilibrium with its vapour, is too small to eliminate finite-size effects on interfacial 
quantities. Nevertheless, we think that it is an interesting model system for liquid- 
vapour coexistence in mixtures. 

We will compare the results of the simulations with the predictions of several 
one-fluid models. A one-fluid model is in fact a generalization of the principle of cor- 
responding states [6, 71: a mixture is represented by a hypothetical pure system with 
suitably chosen potential parameters. Although the thermodynamic properties of the 
pure system are required as input, onefluid models are very useful in understanding 
and predicting properties of mixtures. From simulations of homogeneous fluid mix- 
tures i t  has been found that the van der Waals one-fluid (vdkvlf) model is surprisingly 
accurate [6,  81. We will give an interpretation of this accuracy by considering a sim- 
ple model for a liquid: a random packing of hard spheres [9, IO]. From the values 
of the packing fraction of randomly packed hard-sphere mixtures we will construct a 
one-fluid model with an accuracy comparable with that of the vdwlf model. 

This article is organized as follows. In section 2 we present the atomistic model, 
and the method of obtaining thermodynamic quantities from simulations. In section 3 
one-fluid models arc described. In section 4 we present the results of the simulations, 
and compare these with the predictions of onefluid models. 
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2. Atomistic model and thermodynamic properties 

Binary mixtures of ‘a’ and ‘b’ atoms are considered, with interatomic potentials given 
by (i, j = a, b) 

All quantities in this article are dimensionless, reduced with respect to E,, and ups (so 
that E,, = 1 and U,, = 1). The interatomic potentials are truncated at a cut-off radius 
of R, = 3. For the a-b interaction the relationships uab = (U- t ubb)/2 (Lorentz 
rule) and tab = <(E,,E~~)’/~ (Berthelot rule for E = 1) are used. 

We consider a liquid film in equilibrium with its vapour, consisting of atoms in- 
teracting through potentials given by equation (1). We are interested in the surface 
tension 7 ,  and the partial density profiles p , ( r )  and p b ( z ) ,  i.e. the number densities 
of ‘a’ atoms and ‘b’ atoms as a function of the position coordinate z perpendicular to 
the interface. 

It isstraightforward to  obtain partial density profiles from an atomisticsimulation. 
The total density p,(z) t p b ( z )  a t  the centre of the liquid film (the orthobaric liquid 
density) is denoted by p”q, and U = l/p”q is the average atomic volume in the liquid. 
The excess liquid volume of a mixture, at reduced temperature T = kT/E,, is defined 
as 

UE(T) = U(T) - .,Ua(.) - ZbUb(7) (2) 
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where za and z,, are fractional liquid concentrations (z,+zb = I) ,  and w,(T) = uPure(7) 
and ub(r) = in which wPure(7) is the coexisting liquid volume of the 
pure Lennard-Jones system with R, = 3. 

The surface tension is determined through the virial expression for a plane liquid- 
vapour interface of area A 111: 

= - l (  ( 1 - - 3 )  rjjl(rij) ) 
2A i < j  

(3) 

where r j j  is the distance between the atoms i and j ,  +'(rij) is the derivative of the 
pair potential (l), and angular brackets denote an ensemble average. In a previous 
article 151 we demonstrated that values of the surface tension determined through the 
virial expression are in agreement with values determined through the definition in 
terms of the Eree energy F ,  7 = (bF/lJA),,,,,. 

The long-range correction for the surface tension, i.e. the contribution of the tail 
of the interatomic potential beyond the cut-off radius, is given by 

This expression is obtained by using the approximation g(r) a 1 for P > R, (g(r) is 
the radial distribution function), and neglecting the density of the vapour [ll]. For 
the pure Lennard-Jones system the sum in equation (4) is equal to unity. 

The excess surface tension of a mixture is defined as 

= "ir) - zaYa(r) - xb7b(T) (5) 

where ya and yb are the surface tensions of components 'a' and 'b', respectively. We 
denote the surface tension of the pure system by 7,,,, so that ya(7) = 7pure(7) and 

= (a /G)( l -u~b)f$_Z(~/~bb)  is asmall  
correction term to arrive at  the proper cut-off radius for the b-b interaction). 

= [ Y p " , ( r / ~ b b ) + A 7 ~ l E b b / u ~ b  (here 

3. One-fluid models 

In the one-fluid models described in this section, a binary Lennard-Jones mixture is 
represented by a hypothetical pure system with parameters E, and us. The principle 
of corresponding states gives 

and 

where A7, = (a/6)(1 - uz)p$p2(T/&,.) is again a small correction term to arrive at  
the proper cut-off radius. 
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The simplest one-fluid model is the random-mixing (RM) approximation [121: 

This model is known to give a poor description of a binary mixture, unless all atoms 
are of the same size (U, = uab = ubb) [6]. It corresponds to the assumption that 
aU radial distribution functions are equal: gij(r) = g,(r) for all i, j .  A more realistic 
assumption is [7, 131: gij (r /ui j )  = gz(r/uz) for all i , j .  Substitution in the energy 
equation (relating the interaction energy to the radial distribution functions) gives [7] 

and substitution in the compressibility equation (relating fluctuations in the number 
density to the radial distribution functions) gives [14] 

Equations (Sa) and (9b) represent the vdwlf approximation [14,15]. Comparison with 
computer simulations of homogeneous mixtures has shown, that the accuracy of the 
vdwlf approximation is comparable with the accuracy of hard-sphere perturbation 
theories [6,  81. 

In the following we develop a third one-fluid model, which we call a random-packing 
(RP) model, as it makes use of the concept of random packing of hard spheres. Values 
of thermodynamic quantities computed with this model turn out to be very close to 
values computed with the vdwlf model. One of the reasons to develop tbc RP model, 
is to gain some insight into the accuracy of the vdwlf model. 

A simple model for a liquid (or dense fluid) is a random packing of bard spheres. 
This was realized thirty years ago, from the observation that the radial distribution 
function g(r)  of a random close packing of hard spheres is remarkably similar to the 
g(r) ofliquid argon [9, 101. Later, it was demonstrated theoretically that the structure 
of a liquid is determined primarily by short-range repulsive forces [16, 71. 

The packing fraction p of a system of bard spheres is the fraction of volume that 
is occupied by material, Application of this definition to a binary mixture of spheres 
with diameters uaa = 1 and uhb # 1, gives 

where z, and x b  are tile fractional concentrations of ‘a’ and ‘b’ spheres, respectively, 
and the dependence of p and p on ubb has been indicated explicitly. Hence 
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This leads us to the following expression for the parameter us of the RP model 

We show below, that for 0.8 < ubb < 1.25 the packing fraction is approximately 
constant, the variation being 1.6% a t  most. This means that the factor p(ubb = 
l)/p(ubb) in equation (12) can be set equal to unity, in a good approximation. 

In the case of a mixture with only size effects, i.e. E,, = cab = tbb = 1, equation 
(12) is sufficient t o  define the RP model (setting E, = 1). This is the case considered in 
section 4.4. In section 4.3,  we consider the case of a mixture with only energy effects, 
i.e. uaa = cab = ubb = 1. In this case, the RM and the vdwlf model yield the same 
expression for E, 

E, = C X i X j E i j  

i , j  

i.e. E, is simply a weighted average of the different E parameters. In section 4.5 we 
consider the argon-krypton system, with E,, # cbb and uaa # ubb. If one wants to 
use the RP model in this case, an additional equation is required to fix the parameter 
E,. We will use equation (Sa), as it is based on a realistic assumption for the radial 
distribution functions. 

In the following we give a justification of the approximation p(ubb = I)/p(ubb) % 1 
in equation (12). 

Random packing of hard spheres is studied conveniently by computer construction. 
Several algorithms can be used to  construct a random packing in a computer, just as 
there are several methods of preparing a random packing in reality (shaking etc). 
We used an algorithm similar to that described by Bennett [17]. Details of these 
computations will be published elsewhere [MI, here we only present the results. For 
identical spheres (i.e. a mixture with ubb = 1) we obtained a packing fraction of 
p = 0.6055, in agreement with the value found by Bennett 1171 (p = 0.61). For an 
equimolar mixture of spheres with diameters U,, = 1 and ubb = 0.8 we obtained 
p = 0.6155, i.e. only 1.6% higher than the value for ubb = 1. These results are 
consistent with the results of Visscher and Bolsterli [19], who also studied random 
packing of hard-sphere mixtures by computer construction. 

I t  is interesting to note, that  the RP model yields a zero excess liquid volume 
if the approximation p(ubb = l)/p(ubb) % 1 is used. This follows directly from 
equations (12) and (2). Almost thirty years ago, Alder [20] found by molecular- 
dynamics simulations that the excess volume of hard-sphere mixtures is nearly zero. 
The same is true for Lennard-Jones mixtures with only size differences ['SI. In section 
4.4  this point is discussed further. 

4. Simulations 

In this section results of Monte Carlo simulations are presented, and compared with 
predictions of one-fluid models. 
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4.f .  Simulaiion method 

Simulations are performed-on~equimolar binary mixtures of N = 256 atoms ( N ,  = 
Nb = B N ) ,  with interatomic potentials given by equation (1).  A liquid film is prepared 
in a rectangular simulation box with sides of length L,, L, and L, (typically, L, = 
L = 7 and L, = 14), using periodic boundary conditions in the z-, y- and z-directions. 
T i e  film is oriented perpendicular to the z-axis. 

For efficient sampling of configurational phase space, we used the following variant 
of the Monte Carlo method [5,21]. In addition to conventional displacements of atoms, 
exchanges of dissimilar atoms are also allowed. Both displacements and exchanges are 
accepted or rejected according to the Metropolis transition probability, i.e. satisfying 
detailed balance. A simulation consists of 3 x lo5 displacement attempts per atom 
(including 0.5 x lo5 attempts per atom for equilibration), and f N  exchange attempts 
are performed after each 10 (sections 4.4 and 4.5) or 25 (section 4.3) displacement 
attempts per atom. The liquid density (the density at  the centre of the liquid film) is 
determined from a smooth curve through the density profile. The surface tension is 
determined using the virial expression (3). From a standard statistical analysis (for 
details, see [5]) we determined an uncertainty of f0.02 in the value of the surface 
tension (*0.04 in the excess surface tension). The uncertainty in the coexisting liquid 
density is estimated at f0.005 (fO.O1 in the excess liquid volume). The centre of mass 
is kept fixed in a simulation, since otherwise a spurious broadening of the liquid-vapour 
interface would occur, owing to random movements of the centre of mass [5]. 

4.2. Pure system 

Simulations of the pure Lennard-Jones system were performed at seven different tem- 
peratures 7, with 0.68 < T Q 1.0. Values of the surface tension and the coexisting 
liquid density are presented in table 1. Figure 1 shows a plot of the surface ten- 
sion as a function of temperature. The straight line in this figure is a fit, given by 
rPulr(r) = 1.917 - 1.646~. Taking into account the long-range correction, this fit is 
in close agreement with the fit of Rowlinson and Widom [l] to previous results of 
simulations of the Lennard-Jones system. The liquid density is represented by the fit 
p $ , ( ~ )  = 0.9002+ 0.186s - 0.4203~~. 

E Salomons and M Mareschal 

~~ ~~ ~~ ~ ~ ~~ ~~ 
~~~~~ 

I 
""T.l .. -...--, .. ., 

0.6 0.7 0 .8  0.9 i 
temperature 

Figure 1. Surface tensionofLennard-J~nesliquid-vapour system with cut.& radius 
R = 3  
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Table 1. Simulation results for the pure Lennard-Jones system, using a simulation 
box with L,  = Lu = 6.72 and L. = 13.44 (section4.2). 

T Y Pliq 

0.6867 0.79 0.830 
0.72 0.70 0.815 
0.76 0.68 0.800 
0.83 0.57 0.765 
0.90 0.42 0.725 
0.95 0.36 0.700 
1.00 0.27 0.665 

4.3. Mixtures of atoms of equal size 

Simulations were performed on equimolar mixtures of atoms of equal size, i.e., with 
uaa = U,, = ubb = 1. For all mixtures we used ebb = 1.31 (the same value as used in 
14, 51 to model the argon-krypton system with atoms of equal size), while we varied 
the parameter E . ~ ,  or equivalently the Berthelot parameter E .  

0.6 

.---_ 
ly m ': 0.3 

0 -- 
0 25  5 0  7 5  100  

height z (%) 

Figure 2. Density profiles for temperature 7 = 0.9, E = 1.145 (top) and 
(bottom): full cwves, a atoms; broken cwves, b atom.  

= 0.874 

Figure 2 shows two density profiles at temperature T = 0.9, one for Berthelot 
parameter i$ = 1.145, and one for i$ = 0.874. These profiles demonstrate the general 
trend observed in the simulations described in this section. For ( = 0.874 a strong 
adsorption of component 'a' occurs, leading to a maximum in pa(.) near the interface. 
With increasing i $ ,  this maximum decreases gradually, and has disappeared completely 
at = 1.145. 

In figure 3 values of the orthobaric liquid density, and the corresponding values of 
the excess liquid volume, are plotted as a function of Berthelot parameter E ,  for three 
different temperatures. In figure 4 values of the surface tension, and corresponding 
values of the excess surface tension, are plotted as a function of E .  All results are also 
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1 . .  ,, 

4 
E = o  
B . Q: : ;. . . . 
$ e: -0.1 .._..‘“a 

I... 

I ~ ~. 1 , ,  . , ,  , , , ~. 
0 . 6  0.8 1 1.2 1.4 

Bsrlhelol parameter 5 
Figure 3. Liquid density and excess liquid volume of equi-sized Lennard-Jones 
mixtures as a function of E :  broken cwves, onefluid models (in exes8 plot, thick 
curve 7 = 0.9; thin curve T = 1.0); fuli lines, guide to the eye; squares, T = 0,718; 
open circles, 7 = 0.9; filled circles, T = 1.0. 

represented in table 2 (here za is the liquid concentration of component ‘a’). Full lines 
in figures 3 and 4 are guides to the eye, while broken curves represent one-fluid models, 
which are all identical in this case (see equation (13)). For temperature 7 = 0.718 
we have no prediction of one-fluid models, as this temperature is too low to apply 
equations (6) and (7) (the temperature of the hypothetical pure system falls outside 
the range of validity of the fits for the pure Lennard-Jones system, i.e. below the 
triple-point temperature). 

For the liquid density and the excess volume, the predictions of one-fluid models are 
in close agreement with simulation results (figure 3). For the surface tension (figure 4) 
the agreement is good for E 2 1, while for E < 1 the simulation results are systemat- 
ically lower than the predictions of one-fluid models. This systematic deviation is a 
consequence of the effect mentioned in the introduction of this article: interfacial ad- 
sorption of the more volatile component in a binary mixture causes a reduction of the 
surface tension. Indeed, density profiles show strong interfacial adsorption for < 1 
(see figure 2). The explanation of this effect is obvious: the surface tension is most 
sensitive to the composition near the interface, so that interfacial adsorption of the 
more volatile component, which has a weaker interatomic attraction than the other 
component, reduces the surface energy and hence the surface tension (with respect to 
the value expected from the bulk liquid composition). From a thermodynamic point 
of view, the effect follows from the Gibbs adsorption equation. 
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0 . 4 ,  

'3 2! : o . z i  e/,/i 
.5 3 0  
2 
8 
I 8.0.2 I '  3 

.0.4 
0.6 0.8 1 1.2 1.4  

Eerthelot parameter 5 

Figure 4. Surface tension and excess surface tension of equi-sized Lennard-Jones 
mixtures as a function of E .  Broken curves: one-fluid models; full lines: guide to  the 
eye. Squares, r = 0.718; open circles, 7. = 0.9; Wed cirrles, 7 = 1.0. 

Table 2. Simulation results for equimolar mixtures with oaa = Oab = ebb = 1 
and ebb = 1.31, using a simulation box with L, = L ,  = 6.72 and L,  = 13.44 
(section 4.3). 

0.718 1 1.06 
0.718 0.874 0.95 
0.9 1.310 1.09 
0.9 1.145 0.93 
0.9 1 0.72 
0.9 0.874 0.59 
0.9 0.786 0.54 
1.0 1.310 0.91 
1.0 1.145 0.72 
1.0 1 0.56 
1.0 0.874 0.46 
1.0 0.786 0.34 

0.870 
0.860 
0.840 
0.820 
0.790 
0.770 
0.760 
0.800 
0.780 
0.745 
0.720 
0.705 

0.425 
0.314 
0.476 
0.463 
0.443 
0.390 
0.316 
0.475 
0.462 
0.450 
0.417 
0.369 

4.4. Mixtures of atoms of  digerent size 

Simulations were performed on equimolar mixtures with E,, = = = 1 and 
0.8 < ubb < 1.2. Figure 5 shows the density profile obtained for a mixture with 
ubb = 1.2, at  temperature T = 0.718. 

In figure 6 values of the coexisting liquid density, and corresponding values of the 
excess liquid volume, are represented by filled symbols, as a function of the parameter 
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- .3 0 9 
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0 25 50 7s 1 o a  
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Figure 5. Density profile for 7 = 0.718 and rbb = 1 . 2  broken curve, a atom; full 
curve, b ntoms. 
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Table 3. Simulaticn results for equimolar mixtures with ea* = = ebb = 1 ,  using 
a simulation box with L, = L, = $L,  = 7.39 for C b b  = 1.2,L, = L, = iL= = 7.06 
for obb 3 1.1, and L, = L, = $Lz = 6.72 otherwise (section 4.4). 
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7 - 
0.718 
0.718 
0.718 
0.718 
0.718 
0.9 
0.9 
0.9 
0.9 
0.9 

C'bb - 
0.8 
0.88 
0.94 
1.1 
1.2 
0.8 
0.94 
0.97 
1.03 
1.06 

Y 

1.01 
0.94 
0.85 
0.66 
0.56 
0.60 
0.48 
0.49 
0.41 
0.41 

__ 
pliq 

- 
1.120 
0.980 
0.900 
0.695 
0.610 
0.975 
0.795 
0.765 
0.695 
0.655 

=, 

0.451 
0.469 
0.489 
0.525 
0.541 
0.477 
0.491 
0.497 
0.504 
0.504 

- 

1 
0.7 0.8 0.9 1 1.1 1.2 . 3  

Figure 7. Surface tension and excess surface tension as a function of U b b .  Long- 
short broken cwves, RM; full curves, RP; broken -Yes, vdwlf. In the excess plot, 
t l k k  curves (7 = 0.718), thin curves (T = 0.9).  

One-fluid models are represented hy the different curves in figures 6 and 7. The 
RM approximation fails even for small deviations from the value ubb = 1. The vdwlf 
model and the RP model [using p(ubb) = constant] work much better. The agreement 
is excellent for the liquid density and the excess volume (figure 6). For the surface 
tension (figure 7) the agreement is reasonable. The numerical difference between the 
vdwlf model and the RP model is small. 

Simulation values of the excess liquid volume vE are nearly zero over the full range 
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0.8 < ubb < 1.25 (figure 6). The vdwlf model yields slightly negative values for 
uE. The RP model yields a zero excess liquid volume if the approximation p(ubb = 
l)/p(ubb) = 1 is used (see section 3). If instead the values p(ubb = 1) = 0.6055 and 
p(ubb = 0.8) = 0.6155 are used (see section 3), the RP model yields uE = -0.015 for 
ubb = 0.8, and vE = -0.03 for ubb = 1.25 [using p(l/ubb) = p(ubb)]. These values are 
very close to the values predicted by the vdwlf model (see figure 6). 

4.5.  Argon-krypton system 

We performed a simulation of an equimolar mixture with Lennard-Jones parameters 
appropriate to the argon-krypton system [SI: cbb = 1.394, [ = 0.989, ubb = 1.067. A 
temperature of T = 0.948 was used. The density profile (figure 8) shows a substantial 
adsorption of argon at  the interface. The results we obtained for the surface tension 
and the coexisting liquid density are represented in table 4, together with predictions 
of one-fluid models. 
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0 . 5  I 

0 . 4  
z 
c 
al 

.z 0.3 
0.2 

0.1 

0 

,.*-.e.. by\ 
. ~ 

'. 
0 25 50 7 5  

heiaht z f%) - . .  
Figure 8. Density proliie for argon-kryplon system at T = 0.948: full curve, argon; 
broken curve, krypton. 

Table 4. Sirnulation resulls for equimolarargon-krypton mixture, using a simulation 
box with L, = L, = 7.15 and L, = 14.30 (section 4.5). 

MC 0.67 0.700 
RM 0.624 0.685 
RP 0.684 0.704 
vdwlf 0.688 0.706 

The simulation results lead to an excess surface tension of Y~ = 0.00 (inclusion 
of the long-range correction does not change this value) and an excea liquid volume 
of wE = -0.019. The value of the excess volume is in good agreement with the 
experimental value for the argon-krypton system [13]: uE = -0.022. The value of the 
excess surface tension deviates from the experimental value [22] yE = -0.056, but this 
deviation is only slightly larger than the statistical error bar of 10.04. 

5.  Conclusions 

A systematic study has been presented of liquid-vapour coexistence in binary 
Lennard-Jones mixtures. The effect of the energy parameter and the effect of the 
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size parameter have been investigated separately. In mixtures of atoms of equal size, 
strong interfacial adsorption of the more volatile component occurs for Berthelot pa- 
rameter t < l. This adsorption causes a significant reduction of the surface tension 
(with respect to the value expected from the bulk liquid composit,ion). The size effect 
has been studied by simulations of mixtures with equal energy parameters. It has 
been found that in the range 0.8 < ubb < 1.25 both the excess surface tension and the 
excess liquid volume are small. 

Two general points emerge from this work: 

(i) accurate values of liquid-vapour interfacial properties of mixtures can be ob- 

(ii) one-fluid approximations (vdwlf and RP) can be used to predict these values. 

As for the first point, it is essential to include exchanges of dissimilar atoms in the 
simulations, to avoid ergodicity problems. This leads to density profiles with relatively 
small spatial fluctuations, and values of the surface tension with a statistical accuracy 
of +0.02. In the future, with the increasing power of computers, it is desirable to go 
to larger systems, to exclude finitesize effects on interfacial properties. 

As for the second point, it has been shown that the vdwlf model is very accurate 
in predicting the coexisting liquid density, and reasonably accurate in predicting the 
surface tension. The effect of interfacial adsorption on the surface tension, however, 
is not taken into account by one-fluid models (although an attempt has been made to 
take adsorption into account in the RM approximation 1121). 

We have given an interesting interpretation of the accuracy of the vdwlf model, by 
developing the conceptually simple RP model, which yields values that differ numeri- 
cally very little from vdwlf values. Whereas the vdwlf model (equation (9b)) follows 
from consideration of density fluctuations, the RP model (equation (12)) is obtained 
from consideration of the density itself. Application of the RP model requires values 
of the packing fraction of hard-sphere mixtures, which can be calculated by computer 
construction. This implies that application of the RP model is not as straightforward 
as application of the vdwlf model (except in the range 0.8 5 ubb 5 1.25, where the 
packing fraction is constant, in good approximation). On the other hand, the range of 
validity (in terms of the size ratio ubb/uaa) is expected to be larger for the RP model 
than for the vdwlf model. Even in the extreme case where the size ratio is so small 
(or large) that  the small spheres fit entirely in the voids between the close-packed large 
spheres (we use the hard-sphere picture of a liquid here), the RP model might still be 
a reasonable approximation. 

tained from atomistic simulations; and 
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